skip to main content


Search for: All records

Creators/Authors contains: "Miller, Andrew L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Gravitational-wave astronomy allows us to study objects and events invisible to electromagnetic waves. So far, only signals triggered by coalescing binaries have been detected. However, as the interferometers’ sensitivities improve over time, we expect to observe weaker signals in the future, e.g. emission of continuous gravitational waves from spinning, isolated neutron stars. Parallax is a well-known method, widely used in electromagnetic astronomical observations, to estimate the distance to a source. In this work, we consider the application of the parallax method to gravitational-wave searches and explore possible distance estimation errors. We show that detection of parallax in the signal from a spinning down source can constrain the neutron star moment of inertia. For instance, we found that the relative error of the moment of inertia estimation is smaller than 10 per cent for all sources closer than 300 pc, for the assumed birth frequency of 700 Hz, ellipticity ≥10−7, and for 2 yr of observations by the Einstein Telescope, assuming spin-down due purely to quadrupolar gravitational radiation.

     
    more » « less
  2. ABSTRACT

    Rotating neutron stars (NSs) are promising sources of gravitational waves (GWs) in the frequency band of ground-based detectors. They are expected to emit quasi-monochromatic, long-duration GW signals, called continuous waves (CWs), due to their deviations from spherical symmetry. The degree of such deformations, and hence the information about the internal structure of an NS, is encoded in a dimension-less parameter ε called ellipticity. Searches for CW signals from isolated Galactic NSs have shown to be sensitive to ellipticities as low as $\varepsilon \sim \mathcal {O}(10^{-9})$. These searches are optimal for detecting and characterizing GWs from individual NSs, but they are not designed to measure the properties of NSs as population, such as the average ellipticity εav. These ensemble properties can be determined by the measurement of the stochastic gravitational-wave background (SGWB) arising from the superposition of GW signals from individually undetectable NSs. In this work, we perform a cross-correlation search for such a SGWB using the data from the first three observation runs of Advanced LIGO and Virgo. Finding no evidence for an SGWB signal, we set upper limits on the dimension-less energy density parameter Ωgw(f). Using these results, we also constrain the average ellipticity of Galactic NSs and five NS ‘hotspots’, as a function of the number of NSs emitting GWs within the frequency band of the search Nband. We find $\varepsilon _{\mathrm{av}} \lesssim 1.8 \times 10^{-8}$, with Nband = 1.6 × 107, for Galactic NSs, and $\varepsilon _{\mathrm{av}} \lesssim [3.5-11.8]\times 10^{-7}$, with Nband = 1.6 × 1010, for NS hotspots.

     
    more » « less
  3. Abstract Detection of a gravitational-wave signal of non-astrophysical origin would be a landmark discovery, potentially providing a significant clue to some of our most basic, big-picture scientific questions about the Universe. In this white paper, we survey the leading early-Universe mechanisms that may produce a detectable signal—including inflation, phase transitions, topological defects, as well as primordial black holes—and highlight the connections to fundamental physics. We review the complementarity with collider searches for new physics, and multimessenger probes of the large-scale structure of the Universe. 
    more » « less
  4. Abstract

    The Einstein Telescope (ET), the European project for a third-generation gravitational-wave detector, has a reference configuration based on a triangular shape consisting of three nested detectors with 10 km arms, where each detector has a 'xylophone' configuration made of an interferometer tuned toward high frequencies, and an interferometer tuned toward low frequencies and working at cryogenic temperature. Here, we examine the scientific perspectives under possible variations of this reference design. We perform a detailed evaluation of the science case for a single triangular geometry observatory, and we compare it with the results obtained for a network of two L-shaped detectors (either parallel or misaligned) located in Europe, considering different choices of arm-length for both the triangle and the 2L geometries. We also study how the science output changes in the absence of the low-frequency instrument, both for the triangle and the 2L configurations. We examine a broad class of simple 'metrics' that quantify the science output, related to compact binary coalescences, multi-messenger astronomy and stochastic backgrounds, and we then examine the impact of different detector designs on a more specific set of scientific objectives.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024